APELLIDO Y NOMBRE: CARRERA:

1	2	3	4	Lab.	Nota

TERCER PARCIAL: ANÁLISIS NUMÉRICO (I) Jueves 14 de Junio de 2007

- 1. Demostrar las siguientes desigualdades:
 - a) $\max_{i,j=1,\dots,n} |a_{ij}| \leq \|A\|_2 \leq \max_{i,j=1,\dots,n} |a_{ij}|$, donde A es una matriz real de tamaño $n \times n$.
 - b) $\frac{1}{\sqrt{n}} \|A\|_1 \le \|A\|_2 \le \sqrt{n} \|A\|_1$, donde A es una matriz real de tamaño $n \times n$.
- 2. Sean u, v vectores de \mathbb{R}^n . Mostrar que si $E = uv^T$, entonces $||E||_2 = ||u||_2 ||v||_2$ y $||E||_{\infty} = ||u||_{\infty} ||v||_1$.
- 3. Se desea resolver el sistema Ax = b usando el método de Gauss-Seidel, donde

$$A = \left[\begin{array}{rrr} 1 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 1 \end{array} \right].$$

- a) Determinar si la sucesión generada por el método de Gauss-Seidel es convergente justificando su respuesta.
- b) Si se deseara acelerar el método, ¿Cuál sería el parámetro óptimo de aceleración ω^* ?.
- 4. Dado el sistema Ax = b, donde $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$ y $b = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$:
 - a) Determinar si la sucesión generada por el método de Jacobi es convergente justificando su respuesta.
 - b) Calcular el número de iteraciones k tal que $||e^{(k)}|| \le 10^{-5}$, donde $e^{(k)}$ es el error en la etapa k.

GURI LaBisagra

